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1 Singular Value Decomposition

For any linear transformation 7" : V™ — W™ there exists orthonormal basis
€1,€2,...,em for W and fi, fa,..., fn for V such that T has a rectangular
diagonal matrix with diagonal entries 01,02, ..., Omin (n,m) With regard to these
basis. [1]

We can rewrite the above statement in terms of matrices: for any matrix
A™X"we can decompose it to:

A =U,DUY
e U5 is a m X m matrix with columns that form a orthonormal basis of V™.
e Uf is a m x n matrix with rows that form a orthonormal basis of W".
e D isarectangular diagonal nxm matrix with diagonal entries 01, 02, .. ., Omin (n,m)

Based on Singular Value Decomposition (abbreviated as SVD), each m x n
matrix A™*™ with equal numbers of rows and columns can be written as:
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‘ | . : . : .

0 0o ... Omin(m,n) 7 fZ-' .

The decomposition can also be written in the following way as a sum of rank-1
matrices. | = min (m,n) in the following expression:
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Therefore, we can approximate the matrix A with the first £ rank-1 matrices
since the singular values follow o1 > g9 > --- > ¢;. The matrices with larger



singular values contribute most to the matrix A, and the last terms with smaller
singular values have much lower contributions.
The approximation of A, A’ will be:

k |
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As proven during the lecture, A’ is the best approximation of A with matrices
of rank k.

2 SVD in image compression

As we know, any image contains three color channels: red, green, and blue.
Each channel can be represented as a m X n matrix with values ranging from 0
to 255. We will now compress the matrix A by performing SVD on each channel
and picking only the first k singular values. [2]

For each channel, the original matrix size is m X n, so the size of the original
image is proportional to 3mn. After performing SVD and selecting only k
largest singular values, we have k rank-1 matrix in the form:

|
oi lei| (—fF—)
|

Each matrix needs to store 1 + m + n values, since o; is one value, each vector
e; has m values, and f; has n values. Thus, after compression, the size of the
image is proportional to 3k(1 4+ m+n), which is significantly smaller than 3mn.

The following image demonstrates applying different compression factor k
to compress an image of the Tech Tower:

Original image: rank = 787 Compressed with k=0.9, rank=708 Compressed with k=0.5, rank=393
size = 534.64 kb size = 255.66 kb size = 269.01 kb

Compressed with k=0.2, rank=157 Compressed with k=0.05, rank=39 Compressed with k=0.01, rank=7
size = 246.08 kb size = 102.91 kb

N

Figure 1: Image compression using SVD



3 SVD in image denoising

Gaussian noise has a probability density function (pdf) that follows a normal
distribution, characterized by mean p and variance 0. This gives it an isotropic,
uniform effect across the image.

The key theory that enables noise removal is that the singular vectors can
be split into two components:

1. Principal components - Corresponding to large singular values, these con-
tain most of the meaningful image content.

2. Noisy components - Corresponding to small singular values, these mostly
contain noise.

The noise components arise because noise is spread across all the eigenvec-
tors. However, the eigenvalues associated with the principal components are
much larger.

By reconstructing the image only from the principal components (filtering
out small singular values), we remove the vectors that mostly contain noise.
This filters out a significant portion of noise while retaining key image features
and enables SVD to be an effective tunable filter for Gaussian denoising based
on mathematically sound matrix decomposition theory.

Notably, the number of principal components that are retained determines
how much of the original image is preserved. Using more principal components
preserves more information but retains more noise spreading among the com-
ponents.

Conversely, keeping fewer principal components filters out more noise but
also removes some finer details of the original image. This creates a tradeoff
between noise reduction and preservation of details. [3]

The following image demonstrates using SVD to denoise a noisy image of
the Bobby Dodd Stadium at Georgia Tech.

Image with Gaussian noise Denoised image by ommiting last 10% terms

Figure 2: Image denoising using SVD



Code Availability

All the code and images involved in this paper are available on |github.
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